(-13x^2-13x-10)+(19x^2-19x-5)=0

Simple and best practice solution for (-13x^2-13x-10)+(19x^2-19x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-13x^2-13x-10)+(19x^2-19x-5)=0 equation:



(-13x^2-13x-10)+(19x^2-19x-5)=0
We get rid of parentheses
-13x^2+19x^2-13x-19x-10-5=0
We add all the numbers together, and all the variables
6x^2-32x-15=0
a = 6; b = -32; c = -15;
Δ = b2-4ac
Δ = -322-4·6·(-15)
Δ = 1384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1384}=\sqrt{4*346}=\sqrt{4}*\sqrt{346}=2\sqrt{346}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{346}}{2*6}=\frac{32-2\sqrt{346}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{346}}{2*6}=\frac{32+2\sqrt{346}}{12} $

See similar equations:

| 2=6x-1-x | | 4n+9=2(5+2n | | -3(4-2x)+2=-2(5-3x) | | 21+33=-3v-6v | | -6(-3+5k)=-143+11 | | 34.8+0.2(x-4)=16.8+27x | | 17/7=v/4 | | 9=n1 | | 3(4x-6)=-3(5-2x)= | | x+x+116.8=180 | | -13+m÷2=-13 | | 2=m+9÷8 | | x+(25+x)+(3x)=435 | | x+x+60=90 | | n/9=81 | | 7n+12=½(14n+24) | | 2=m+9/8 | | 4=j+4/3 | | -13+m/2=-13 | | x+x+166=180 | | -4(5+3)=-30-7x | | 4.4+10m=7.76 | | 2x+10/3=11 | | 3m=15.12 | | -3=4+p/5 | | 12/b=-3 | | x+x+49=90 | | -8n-(-6n)=-18 | | 32=8(m+3) | | -(b-9)=5 | | 5=10+x/3 | | w/3+1.1=6.4 |

Equations solver categories